Selective Detection of Aroma Components By Acoustic Wave Sensors Coated With Conducting Polymer Films

نویسندگان

  • Zhiping Deng
  • David C. Stone
  • Michael Thompson
چکیده

Eight conducting polymer films of polypyrrole and its derivatives were used as sensitive and selective coatings for thickness-shear mode (TSM) acoustic wave sensors. They were applied to the detection of volatile alcohols and carbonyl compounds, which are important fish freshness determinants. The conducting polymers were synthesized and coated on TSM devices by electrochemical oxidation. The exposure of the coated TSM sensors to four compounds (pent-1-en-3-01, oct-1-en-3-01, nona-3,6-dien-l-ol and nona-2,6-dienal) was investigated, and a linear response with concentration found for the different aroma components. The sensor response was also found to be proportional to the film thickness. The response patterns obtained by grouping the data from the individual sensors are characteristic for each aroma molecule, and were investigated using both cluster and principal components analysis. The results demonstrate the feasibility of fish freshness determination through the use of a TSM sensor array combined with pattern recognition techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of linear solvation energy relationships for modeling responses from polymer-coated acoustic-wave vapor sensors.

The applicability and performance of linear solvation energy relationships (LSERs) as models of responses from polymer-coated acoustic-wave vapor sensors are critically examined. Criteria for the use of these thermodynamic models with thickness-shear-mode resonator (TSMR) and surface-acoustic-wave (SAW) vapor sensors are clarified. Published partition coefficient values derived from gas-liquid ...

متن کامل

Long-Term Stability of Polymer-Coated Surface Transverse Wave Sensors for the Detection of Organic Solvent Vapors

Arrays with polymer-coated acoustic sensors, such as surface acoustic wave (SAW) and surface transverse wave (STW) sensors, have successfully been applied for a variety of gas sensing applications. However, the stability of the sensors' polymer coatings over a longer period of use has hardly been investigated. We used an array of eight STW resonator sensors coated with different polymers. This ...

متن کامل

Temperature Frequency Characteristics of Hexamethyldisiloxane (HMDSO) Polymer Coated Rayleigh Surface Acoustic Wave (SAW) Resonators for Gas-Phase Sensor Applications

Temperature induced frequency shifts may compromise the sensor response of polymer coated acoustic wave gas-phase sensors operating in environments of variable temperature. To correct the sensor data with the temperature response of the sensor the latter must be known. This study presents and discusses temperature frequency characteristics (TFCs) of solid hexamethyldisiloxane (HMDSO) polymer co...

متن کامل

Gas Sensors Based on Electrospun Nanofibers

Nanofibers fabricated via electrospinning have specific surface approximately one to two orders of the magnitude larger than flat films, making them excellent candidates for potential applications in sensors. This review is an attempt to give an overview on gas sensors using electrospun nanofibers comprising polyelectrolytes, conducting polymer composites, and semiconductors based on various se...

متن کامل

Advances in SXFA-Coated SAW Chemical Sensors for Organophosphorous Compound Detection

A polymer-coated surface acoustic wave (SAW)-based chemical sensor for organophosphorous compound sensing at extremely low concentrations was developed, in which a dual-delay-line oscillator coated with fluoroalcoholpolysiloxane (SXFA) acted as the sensor element. Response mechanism analysis was performed on the SXFA-coated chemical sensor, resulting in the optimal design parameters. The shear ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003